
Report Semesterarbeit MORE-Web

Esteban Maŕın

2013-06-20

Abstract

This document describes an undergraduate project (Semesterarbeit) that is part
of the physics studies at the ETH in Zurich, Switzerland. An introduction to phys-
ical research in particle physics is given. The need of particle accelerators and
colliders for understanding the fundamental laws of nature is explained. A specific
example is the CERN in Geneva, with an experiment called “CMS”, which is of
particular interest for this project.
Since parts of the “CMS” detector, namely the “CMS Pixel Detector”, a silicon
particle tracker for analyzing the momentum of particles, need to be upgraded, its
components, the modules, need to be tested and qualified.
This Semesterarbeit is about the relaunch of a software “MoRe-Web” that analyzes
test results and displays the qualification. The concept, as well as the implementa-
tion of the software are explained in detail. A step-by-step guide on how to use the
software is given. All requirements for “MoRe-Web” could be met and the software
is up and running, but will still be further improved in order to fit future changes
in the tests.

1

CONTENTS 2

Contents

1 Introduction 3
1.1 High Energy Physics . 3
1.2 Tasks of the Semesterarbeit . 3

2 CERN, LHC and CMS Pixel Detector 4
2.1 Cern . 4
2.2 LHC . 4
2.3 CMS . 4

2.3.1 CMS Pixel Detector . 5

3 Module Qualification 6
3.1 Upgrade of CMS Pixel Detector . 6
3.2 Tests . 6

3.2.1 Bump Bonding Test . 6
3.3 Grading . 7

4 Web Interface and Analysis Scripts 8
4.1 Introduction . 8
4.2 Methodology . 8
4.3 Analysis of Existing Application . 8

4.3.1 BPIX Module Testing . 8
4.3.2 Analysis Scripts . 13

4.4 Requirements . 14
4.4.1 General . 14
4.4.2 Overview . 14
4.4.3 Module Test Overview . 14
4.4.4 Module Test Details . 14

4.5 Concept . 14
4.5.1 Analysis Scripts . 14
4.5.2 MoRe-Web . 15

4.6 Implementation . 15
4.6.1 Analysis Scripts . 15
4.6.2 HTML-Output . 17

4.7 Controller . 22
4.7.1 System Requirements . 22
4.7.2 Step-By-Step Guide . 22

5 Conclusion 24
5.1 Outlook . 24

1 INTRODUCTION 3

1 Introduction

This document describes an undergraduate project (Semesterarbeit) that is part of the
physics studies at the ETH in Zurich, Switzerland. Professor Wallny offered the opportu-
nity to participate in a project called “CMS Pixel Detector”. But the first question that
arises: what is the need for writing this paper?

1.1 High Energy Physics

The goal of physics is to describe nature as accurately as possible, so over many years
many people have worked on theories in order to achieve this goal as good as possible. Up
to now the physics of microscopic particles is best described by the so called “Standard
Model” (SM), which claims that all matter in the universe is made up of elementary
particles and that interactions between those can be associated with other particles [1].

In order to verify the SM, the particles and its properties predicted have to be found
and checked, which is when it comes to high energy particle physics. Many particles have
already been found and the SM was found to accurately describe the particles known so far.
In the mid-late twentieth century, a close connection between two of the four fundamental
forces (interaction) predicted by the standard model was assumed. The SM describes
those two forces with one theory. It states that well known interactions like electricity,
magnetism, light and some types of radioactivity can be described by the concept of the
so-called “electroweak force”. A problem that arose concerning the interaction was that
although all interaction particles were predicted to be massless, which fits the observations
in the case of photons, the W and Z bosons were found to have a mass corresponding to
about 100 times the mass of a proton.
In order to solve this discrepancy between theory and experiments, Robert Brout, François
Englert and Peter Higgs proposed the Brout-Englert-Higgs mechanism, which “gives a
mass to the W and Z when they interact with an invisible field, now called the “Higgs
field”, which pervades the universe. [...] The more a particle interacts with this field, the
heavier it is.”. [2]
As mentioned before, the SM associates a particle with the interaction between elementary
particles, which in the case of the Higgs field is called “Higgs Boson”. The higgs boson
was a particle of particular interest, since it was a fundamental concept in the SM and
the discovery of this particle was therefore crucial for the further verificiation of the
SM. The higgs boson, among other particles, was is being looked for at CERN’s Large
Hadron Collider, a gigantic machine for discovering elementary particles and carrying out
experiments with them. In 2012 on July 4, many physicists were really excited about an
announcement made by the ATLAS and CMS experiments, which claimed the obervation
of “new particle in the mass region around 126 GeV”, consistent with the properties of the
Higgs boson. This discovery was a huge progress in the verification of the SM, but also
the beginning of even further research. This is where the “CMS Pixel Detector” project
mentioned before comes in. It is a detector which is designed to detect and classify, among
other particles, Higgs bosons. [2]

1.2 Tasks of the Semesterarbeit

The main task of this Semesterarbeit was to relaunch an application for qualifying the
test results of parts of the CMS pixel detector.

2 CERN, LHC AND CMS PIXEL DETECTOR 4

2 CERN, LHC and CMS Pixel Detector

2.1 Cern

The two main question at CERN, the European Organization for Nuclear Research, can
be summarized as follows: “What is the universe made of? How did it start?” [3].
With these two questions in mind, physicists and engineers are trying to analyze the
fundamental structure of the universe. At CERN, they are provided with all the tools
needed for this research. The “heart” of cern are the custom -built particle accelerators
and detectors. The collisionning process of particles at velocities close to the speed of
light allows physicists to study the structure of the particles and the fundamental laws of
nature. The particles are boosted to high energies in the accelerators and are then made
to collide with each other or with fixed targets. The results of these collisions are then
observed and recorded in the detectors. The CERN was founded in 1954 and since then
has helped particle physicists to develop theories and check the SM and therefore better
understand the laws of nature.[3]

2.2 LHC

One part of CERN is the Large Hadron Collider (LHC), which, as its name implies, is a
large particle accelerator and collider consisting of a “27-kilometre ring of superconducting
magnets with a number of accelerating structures to boost the energy of the particles along
the way”. Inside the LHC, two high-energy (close to the speed of light) particle beams
travelling in opposite directions in two separate vacuum tubes are forced to collide at
a specific point. In order to keep the particles in the ring, their path is deviated using
strong magnetic fields generated by superconducting electromagnets. “The particles are
so tiny that the task of making them collide is akin to firing two needles 10 kilometres
apart with such precision that they meet halfway!”.[4]

2.3 CMS

As already outlined in section 1, the Compact Muon Solenoid (CMS) is a particle detector
forming part of the LHC. The search for the Higgs boson is among the main purposes,
although it is designed to be a general purpose experiment and fit a wide range of physical
research topics. It has the same scientific goals as the ATLAS experiment at CERN, but
uses a different approach concerning the technical solutions, and is therefore expected
to independently provide similar results as the ATLAS, despite the different technical
implementation. A huge solenoid magnet provides a magnetic field of about 4 Tesla. The
CMS consists of several different parts at different distances from the beam in the center
of the detector.[5] A sectional view of the CMS is shown in figure 1

2.3 CMS 5

Figure 1: Sectional view of the CMS Detector [6]

2.3.1 CMS Pixel Detector

The innermost layer of the CMS is the so-called “silicon tracker”, a tracker detector that
measures the momentum of the particles passing by tracking their path in a magnetic field
using several key points to measure the position and calculate the resulting momentum.
At the very core of the detector, the silicon pixels absorb energy from passing particles.
This signal is then amplified and recorded together with the position information of the
particle. [7] The silicon tracker (CMS Pixel Detector) is divided up into pixel barrel
modules that are arranged in three “pixel barrels” with symmetry axis parallel to the
particle beam.

Pixel Barrel Modules
In the following parts of this document, the Pixel Barrel Modules will simply be called
“Modules”. Each Module contains 66560 sensor pixels that are connected to a dedicated
pixel unit cell (PUC) on one of the 16 readout chips (ROCs) by indium bumps and
arranged in 52 columns and 80 rows per ROC. [9] For a detailed description of the structure
of the modules see [9].

3 MODULE QUALIFICATION 6

3 Module Qualification

3.1 Upgrade of CMS Pixel Detector

In 2014, an upgrade of the CMS pixel detector will be implemented as a part of a series
of upgrades of the LHC. The full detector is expected to be ready by the end of 2016.
[8] In order to include only modules that are working as expected, every single module of
the pixel detector has to undergo a module qualification that calculates an overall grade
according to the test results gained by performing several functionality tests using a cus-
tom software packages called “psi46expert” and “elComandante” and a general purpose
calculation framework “ROOT” that was developed at CERN. [9]

3.2 Tests

There are several different tests that concern either the entire module or the individual
ROCs. The set of all module and ROC tests is called “Module Fulltest” and is performed
for each module individually and three times at two different temperatures.

3.2.1 Bump Bonding Test

An example of a ROC test is the bump bonding test. Its purpose is to test the quality
of the bump bonding between the silicon sensor and the PUC. A scheme of the relevant
parts for this test is given in figure 2. In the test routine, a calibration signal can “either
be injected directly to the preamplifier (using switch 1 in figure 2) or to a pad on the ROC
surface (using switch 2 in figure 2)”. A hit is simulated by injecting the signal to the pad,
inducing a charge in the silicon and therefore generating a “hit” signal. Unfortunately,
the expected result is not perfect, that is if the bump quality is poor or not connecting
at all there might still be a hit signal, which is probably due to a so-called “cross-talk”
phenomenon. The cross-talk describes a parasitic coupling between the calibration voltage
line and the preamplifier (see figure 9). The algorithm that was developed to circumvent
this problem is described as follows.

• Vcal Threshold Determination of the threshold value of the calibration voltage
that generates a hit although switch 1 (figure 9) is open with switch 2 closed.

• Parasitic cross-talk Determination of the threshold value of the calibration voltage
that generates a hit although both switches are open due to the parasitic capaci-
tance.

• Difference The difference of the two threshold values is found to be very close to
zero for a missing bump bond and unequal to zero for a working bump bond. The
difference can therefore be used to determine the quality of the bump bonding.

[9] The result of a bump bonding test summarized for all ROCs on the module can be seen
in figure 9 in the section labeled “Bump Bonding Problems”. The differences between the
two threshold values for the pixels of a selected chip are summarized in figure 11 in the
section labeled “Bump Bonding”. Since the overview of the bump bonding problems in
figure 9 shows no defective pixel, all differences in the bump bonding test of the chip are
expected to be non-zero, which is indeed the case.

3.3 Grading 7

Figure 2: Scheme of relevant parts for bump bonding test [9]

3.3 Grading

The grade of a module is calculated by comparing specific values of the test results with
predefined parameters. Grade A and B allow a module to be installed in the actual
detector, although only those with grade A are located at the first layers near to the
beam. Modules with grade C are not used.

4 WEB INTERFACE AND ANALYSIS SCRIPTS 8

4 Web Interface and Analysis Scripts

4.1 Introduction

Before the beginning of this semesterarbeit, an existing application was used to display
all module qualification test results. As mentioned before, the main part of this semester-
arbeit is to relaunch the module qualification application and adapt it to current needs,
e.g. compatibility with new digital modules, more functionality, better user interface, etc.

4.2 Methodology

As a first step, a basic understanding of the CMS Pixel Detector (see section 2 and the
module qualification tests (see section 3) was needed in order to analyze the requirements
for the web application. In the following sections, the web interface is referred to as
“MoRe-Web” (CMS Pixel Detector Module Qualification Result Web Interface). The
general procedure was then defined to be as follows:

• Analysis of existing application

• Definition of Requirements

• Establishment of a concept for the new MoRe-Web

• Implemenation of MoRe-Web

• Testing

During the entire process, a repeated quality check is needed. It analyses the following
aspects:

• Progress

• Meeting of requirements

• Unexpected problems

• Further improvements

4.3 Analysis of Existing Application

The starting point of the module qualification test results is http://cmspixel.phys.

ethz.ch [10].

4.3.1 BPIX Module Testing

At /moduleTests/moduleDB/prodTable.php an application called “BPIX Module Testing”
is located. The basic purpose of this script is to display an overview table for all module
qualification tests and detail pages with further information for each tested module.

http://cmspixel.phys.ethz.ch
http://cmspixel.phys.ethz.ch

4.3 Analysis of Existing Application 9

Figure 3: BPIX Module Testing Overview [10]

Frontend The frontend offers an overview list of all module qualification tests as can be
seen in figure 3. By clicking on a module test, an overview as seen in figure 4 is presented.
A link in the upper left corner leads to an overview graph for the module test as shown
in figure 5. Also, there is a link horizontally centered which leads to an address levels test
graph as shown in figure 6. By clicking a specific ROC identifier, the corresponding test
results show up as given in figure 7.

Figure 4: BPIX Module Testing ROC Overview [10]

Source The script located at moduleTests/moduleDB/prodTable.php generates the overview
table seen in figure 5. It basically scans the moduleTests/moduleDB/ and compares parts
of the file or folder names to some parameters (e.g. series or search string). It parses the
summaryTest.txt file of a module test and retrieves information such as test date, module
number, grading, etc. from it.

4.3 Analysis of Existing Application 10

Figure 5: BPIX Module Testing Module Test Overview [10]

4.3 Analysis of Existing Application 11

Figure 6: BPIX Module Testing Module Address Levels [10]

4.3 Analysis of Existing Application 12

Figure 7: BPIX Module Testing ROC Test [10]

4.3 Analysis of Existing Application 13

4.3.2 Analysis Scripts

The analysis scripts that process the testing data an generate graphs etc. are located in
/home/peller/sdvlp/elcommandante/trunk/fitting on the lion.ethz.ch server.

Module Summary Page The module summary page in figure 5 is generated by the
script moduleSummaryPage.C Some important functions are listed below:

• moduleSummary

Generates an image file for the module summary page. Generates the subplots using
other functions in the file. Reads the data from ROOT-files. Saves the module
summary as a .ps and .png file. Also generates the address level fits as .ps and .png
files.

• addVcalThreshold

Adds a Vcal Threshold diagram for a single chip to the Vcal Threshold overview.

• makePlot

Draws the subplots “Noise”,“Vcal Thr. Width”,“Rel. Gain Width”,“Pedestal
Spread”,“Parameter1”.(See fitNames, nfit variables in moduleSummary())

• grading

Calculates grading for a module.

• qualification

Calculates the number of dead pixels, etc. needed for grading.

• fitPeaks

Finds peaks for chips in subplots and calculates some statistical values.

The code is difficult to understand, since its structure is not obvious and it lacks docu-
mentation and comments.

Chip Summary Page The chip summary page in figure 7 is generated by the script
chipSummaryPage.C Some important functions are listed below:

• chipSummary

Generates an image file for the chip summary page. Generates the subplots using
other functions in the file. Reads the data from ROOT-files. Saves the module
summary as a .ps and .png file.

• analyse

Generates plots like “ADC Measurement for ROC”, “ADC Calibration for ROC”,
etc.

• readCriteria

Reads data like “NOISE B”,“TRIMMING B”, etc. from a file.

The code is difficult to understand, since its structure is not obvious and it lacks docu-
mentation and comments.

4.4 Requirements 14

4.4 Requirements

4.4.1 General

In general, MoRe-Web should be an easy-to-use interface for accessing information. It
should be accessible by any client device and therefore be built on open web technologies.
Furthermore, it should be optimized for display on mobile devices such as smart phones
or table computers. All data should be stored in such a way that it can easily be accessed
and processed by other software. It also is important that the code is easy to understand
and maintain. Furthermore, the software should be extensible and flexible, in order to
meet requirements that might come up in the future.

4.4.2 Overview

The MoRe-Web should provide an overview list of all tested modules. There might be
several tests per module. By clicking a module, the module overview together with a list
of the ROCs should be displayed, similar to the existing application (see figure 4).

4.4.3 Module Test Overview

The overview page should offer information similar to figure 5

4.4.4 Module Test Details

In general, the test details should be available separately and offline, that is even without
connection to MoRe-Web. The test detail page displays several plots for the test, which
should be zoomable. The information available should be similar to the one in figure 7.

4.5 Concept

The project is divided into two parts. First, the analysis scripts which are the connection
point between the raw testing data and further processing. And second the web interface
MoRe-Web.

4.5.1 Analysis Scripts

The analysis scripts should take data from ROOT-files and generate the following objects
for both the module summary and the chip summary in the given directory structure:

• plots of test results

• HTML-file for summary pages which includes all plots and information and is ac-
cessible offline, that is it should be viewable directly from the file structure

Furthermore, the analysis scripts should insert the parsed data to a database system. For
this particular case the use of sqlite is recommended, since no database server is needed
and the database is directly stored in a file. Already existing entries will be replaced if
the module numbers match. Since this database file is also available offline, it is used to
generated an offline overview page.

4.6 Implementation 15

4.5.2 MoRe-Web

The web interface is basically just a dynamic output of the overview page generated by the
analysis scripts. The individual module tests consist of the offline HTML-files generated
by the analysis scripts.

4.6 Implementation

The software can be found in the repository located at https://svn.cern.ch/reps/

moreweb .

4.6.1 Analysis Scripts

The analysis scripts themselves are based on the following two abstract python classes,
located in AbstractClasses/:

• GeneralTestResult This class is the base for the abstracted test classes for the
module summary page, the chip summary page and the address levels.
It provides functions for populating the data from raw result files, etc. For analysing
a single module, a test result object is created out of the GeneralTestResult class,
which in turn contains sub test result objects that again may store sub test result
objects and so on. The hierarchy is shown in figure 8.

The actual test result data is structured in the following way:

– Attributes

Hash table with attributes for the test, e.g. test date, tested object ID, module
version, etc.

– ResultData

∗ KeyValueDictPairs

Hash table that stores hash tables for unique keys containing a value, a
unit and a label. For example a key can be “TestTemperature”, and the
correspoding hash table stores −10 as the value, ◦C as the unit and “Test
Temperature” as the label.

∗ Plot

Hash table that stores a ROOT-Object used for the plot, a caption, a path
to the generated image file and a file format.

∗ SubTestResults

Hash table that stores sub test results, indexed by keys. For example, the
module test result contains the IV-Curve as a sub test result.

∗ Table

Hash table with three lists for header, body and footer data in a table.

All the above data can be accessed by any test result object (therefore also by sub
test results) since each test result object contains a reference to its parent test result
object and the sub test results are indexed by a unique key.
Some important functions implemented in the class are listed below:

https://svn.cern.ch/reps/moreweb
https://svn.cern.ch/reps/moreweb

4.6 Implementation 16

Figure 8: Class Hierarchy for the inherited GeneralTestResult classes

– PopulateAllData

This function invokes the data population for the rest results and all sub test
results. It needs to be called for the topmost test result instance only.

– CustomInit

Can be implemented for each test result class individually to set the name,
some attributes and other variables before populating data.

– GetUniqueID

Returns a unique id for a ROOT-object in order to prevent memory problems.

– GetPlotFileName

Returns the full path to the corresponding plot file for the current test result.

– PopulateResultData

Implements how the data is populated for the current test result. That is, it
can populate attributes, generate a plot file, store key value pairs and a data
table.

– WriteToDatabase

4.6 Implementation 17

This function invokes the data upload to the database for the rest results and
all sub test results. It needs to be called for the topmost test result instance
only. Could be extended for storing all sub test results including all attributes,
plots, key value pairs etc. (currently not needed, only module test result are
written to database as a single row entry)

– CustomWriteToDatabase

Implements how the data is uploaded to the database for each test result.

Moreover, it implements several functions for generating the HTML-output, ex-
plained in detail in section 4.6.2 For most test result classes, it is sufficient to im-
plement the functions CustomInit and PopulateResultData.

• TestResultEnvironment This class provides general functions and variables that are
needed by all test results, such as database connectivity and general parameters.
The actual test result data is structured in the following way:

– GradingParameters

Hash table with grading parameters used to calculate the final grade of a
module. The grading parameters are read form a configuration file.

– Configuration

Hash table containing several configuration parameters.

4.6.2 HTML-Output

Test Result HTML File As mentioned before, every test result object based on the
class GeneralTestResult creates an output HTML-file for directly opening the test re-
sult data, such as plots, values, etc. It contains a function called GenerateDataFileHTML

which generates the output HTML file with the result data HTML obtained by calling
GenerateResultDataHTML for the test result data and the sub test results. The functionality
in GenerateResultDataHTML could also be directly implemented in GenerateDataFileHTML,
but then it would not be possible to reuse it for sub test results that are displayed on the
same page. For example, the module overview page contains a data table with all ROCs,
but also several subtests, which are displayed on the same page. As of functionality, there
are some key features worth mentioning:

• Navigation Since there are references to parent and sub test results in each test
result instance, a relative navigation between the test results can be implemented
without connection to a database at runtime.

• Style The styling of the HTML document is done using CSS. The layout adapts to
different display sizes by dynamically adapting the number of columns shown to the
screen width. Therefore it is also possible to browse the files on a mobile device.

• Template The HTML-files are generated using template files by replacing markers
with actual content. Hence the layout can be changed without changing the code.
For this, the templating class of the TYPO3-Project (www.typo3.org) was ported
to python and can be found at AbstractClasses/Helper/HTMLParser.py

The specific test result HTML-file for a module fulltest is shown in figure 9. Figure 10
shows the same page, but with zoomed IV-Curve. An example for a chip test result
HTML-file is given in figure 11.

www.typo3.org

4.6 Implementation 18

Figure 9: Module Fulltest at −10 ◦C

Overview HTML File Using the same styling, layout and templating as in the test
result HTML-files, an overview page is generated using the class ModuleResultOverview,
which reads the data from either the local database or the global database.

4.6 Implementation 19

Figure 10: Module Fulltest at −10 ◦C with zoomed IV-Curve

An example is given in figure 12.

4.6 Implementation 20

Figure 11: Chip Test Results

4.6 Implementation 21

Figure 12: Overview page with list of module test results

4.7 Controller 22

4.7 Controller

A module qualification session is instantiated using the Controller.py program. It will
instantiate the module test result object for all folders found in the TestResultDirectory

variable defined in the configuration and all necessary sub test result objects from the
classes found in TestResultClasses/CMSPixel/ModuleTestGroup/, provide it with a test
result environment object containing data relevant for the qualification session. It also
reads the configuration and sets all relevant paths.

4.7.1 System Requirements

The following requirements have to be met in order for the Controller.py to run correctly:

1. Python installed, minimum version: 2.6

2. Python packages:

(a) ROOT (http://root.cern.ch/drupal/content/pyroot)

4.7.2 Step-By-Step Guide

Follow this step-by-step guide in order to perform module qualifications and generate the
result output.

1. Check the minimum requirements as described in section 4.7.1

2. Open the command line on your UNIX system(Mac, Linux, etc.)

3. Change to the directory where the analysis scripts are located, i.e. where the
Controller.py is stored, by typing cd PathToAnalysisScripts, where you replace
PathToAnalysisScripts by the actual path to the analysis scripts.

4. Adjust the configuration to your current qualification session by editing the config-
uration files found in the Configuration/ subfolder. The following lists describes
the content of each configuration file:

• GradingParameters.cfg Contains all the grading parameters. Usually needs
no changes.

• ModuleInformation.cfg Contains module information such as the module
version, etc. for the type of modules analysed in the current qualification
session.

• Paths.cfg Stores the paths to the test result directory where all test results you
want to qualify in this session are stored. Moreover, the path to the overview
page is stored. This directory also contains the local Overview.sqlite sqlite
database that stores all qualification results. The same database can be used
for any number of qualification sessions, even when the test results in each
session are stored in different folders, and therefore the resulting overview page
contains all module qualification results.

• SystemConfiguration.cfg Several system parameters such as the default im-
age format, database connection parameters, etc. can be changed in this file.

http://root.cern.ch/drupal/content/pyroot

4.7 Controller 23

5. Type the command python Controller.py to run the qualification session. For each
module, it should display
“Working on: ’TestDate’: ’1363355666’, ’TestType’: ’FullQualification’, ’ModuleID’:
’M1193’ –”. The current step is shown as either “Populating Data” or “Generating
Final Output”. If other messages occur, it is recommended to analyse their mean-
ing, as they are most probably indicating some problems that might have occured
during the qualification process.

6. If no error messages appeared, all files should have been generated and the overview
page can be found in the folder specified in the configuration. Each module test
result folder now contains a folder called FinalResults, which you can browse to
access the test result files of any sub test. Important Notice: The HTML-files
can be opened with any web browser, but for best results, make sure you use an
up-to-date version of one of the applications recommended in table 6. Please note
that Internet Explorer lower than version 10 is unable to display SVG-graphics. If
needed, the output file format can be changed to “png”, with the drawback of losing
the scalability of vector graphics. Also, on some systems the gzip-compression of
SVG-files might cause problems, in which case the configuration in SystemCon-
figuration.cfg can be changed to disable the compression.

Application Minimum Version

Mozilla Firefox 4

Google Chrome 18

Safari 3

Opera 9

Internet Explorer 10

Table 1: Browser recommendations for opening the HTML-files

5 CONCLUSION 24

5 Conclusion

This project gives insight in several parts of physical research work. It is interesting what
effort needs to be done in order to understand the tiniest particles in the universe using
gigantic machines. What is most astonishing is the endurance that physicists show in
order to gain a better understanding of nature.

The result of this Semesterarbeit is very satisfying. The software “MoRe-Web” is working
properly and is already used in the productive module qualification. All requirements
could be met and the users of the software can easily adapt the code to their needs.
The software was implemented in a way that allows its use also for other projects than the
CMS pixel detector module qualification where plots and information of several objects
have to be analysed and displayed.

5.1 Outlook

Since all important features have been implemented, there are currently no open tasks.
However, the tests are expected to change and increase in number, since they have not all
been adapted to the upgrade of the CMS pixel detector. Code changes should be possible
without much effort, since the software was designed to be modular and extensible.

REFERENCES 25

References

[1] W.N. Cottingham, D.A. Greenwood, An Introduction to the Standard Model of Par-
ticle Physics, 2nd edition, Cambridge University Press, 2007.

[2] CERN, The search for the Higgs boson [Online], 2013-06-19,
http://home.web.cern.ch/about/physics/search-higgs-boson

[3] CERN, About CERN [Online], 2013-06-19,
http://home.web.cern.ch/about

[4] CERN, The Large Hadron Collider [Online], 2013-06-19,
http://home.web.cern.ch/about/accelerators/large-hadron-collider

[5] CERN, CMS [Online], 2013-06-19,
http://home.web.cern.ch/about/experiments/cms

[6] CERN, Sectional view of CMS [Online Image], 2013-06-19,
https://cms-docdb.cern.ch/cgi-bin/PublicDocDB/RetrieveFile?docid=

11514&version=1&filename=cms_120918_03.png

[7] CERN, CMS Tracker Detector [Online], 2013-06-19,
http://cms.web.cern.ch/news/tracker-detector

[8] CERN, CMS Tracker Detector Upgrade [Online], 2013-06-20,
http://cms.web.cern.ch/news/cms-prepares-pixel-and-hcal-upgrades

[9] P. Trüb, CMS Pixel Module Qualification and Monte-Carlo Study of H, Ph.D. thesis,
Diss. ETH No. 17985 (2008).

[10] CMS pixel group, BPIX Module Testing [Online], 2013-06-20,
http://cmspixel.phys.ethz.ch/moduleTests/moduleDB/prodTable.php

http://home.web.cern.ch/about/physics/search-higgs-boson
http://home.web.cern.ch/about
http://home.web.cern.ch/about/accelerators/large-hadron-collider
http://home.web.cern.ch/about/experiments/cms
https://cms-docdb.cern.ch/cgi-bin/PublicDocDB/RetrieveFile?docid=11514&version=1&filename=cms_120918_03.png
https://cms-docdb.cern.ch/cgi-bin/PublicDocDB/RetrieveFile?docid=11514&version=1&filename=cms_120918_03.png
http://cms.web.cern.ch/news/tracker-detector
http://cms.web.cern.ch/news/cms-prepares-pixel-and-hcal-upgrades
http://cmspixel.phys.ethz.ch/moduleTests/moduleDB/prodTable.php

	Introduction
	High Energy Physics
	Tasks of the Semesterarbeit

	CERN, LHC and CMS Pixel Detector
	Cern
	LHC
	CMS
	CMS Pixel Detector

	Module Qualification
	Upgrade of CMS Pixel Detector
	Tests
	Bump Bonding Test

	Grading

	Web Interface and Analysis Scripts
	Introduction
	Methodology
	Analysis of Existing Application
	BPIX Module Testing
	Analysis Scripts

	Requirements
	General
	Overview
	Module Test Overview
	Module Test Details

	Concept
	Analysis Scripts
	MoRe-Web

	Implementation
	Analysis Scripts
	HTML-Output

	Controller
	System Requirements
	Step-By-Step Guide

	Conclusion
	Outlook

