Operation of the CMS Pixel Detector

A. Starodumov, on behalf of the CMS Collaboration

IPP, ETH Zurich, Switzerland

Vertex 2011 June 19-24, 2011, Rust, Austria

Outline

- The CMS Pixel Detector
- Operation of the Pixel Detector
- On-line and off-line calibrations
- Performance of the Pixel Detector
- Conclusions

CMS Pixel Detector, Vertex10

22/06

CMS at LHC

LHC:

- 27 km ring, 1232 superconducting (1.9 K) dipoles
- p p collider, 7 TeV each beam
- nominal luminosity 10³⁴ cm⁻²s⁻¹, rate 40 MHz

CMS:

- Length 22 m, diameter 15 m, weight 12.5 kton
- Magnetic field 3.8 Tesla

Pixel Detector:

- Barrel layers: I = 53 cm, R = 4.2, 7.3, 11 cm
- Forward disks: $z = 34.5, 46.5 \, cm, R = 6 \div 15 \, cm$
- Area $\sim 1.1 \, m^2$, 66M channels

CMS Pixel Detector I

CMS Pixel Detector built of:

- BPix: 768 modules, 11520 ROCs, 48 Mpixels
- FPix: 192 panels, 4320 ROCs, 18Mpixels

Rapidity coverage:

- with 3 pixel hits up to $|\eta|$ =2.1
- with 2 pixel hits within 2.1<| η |<2.5

CMS Pixel Detector II

- BPix has 2 module designs: 16ROCs and 8 ROCs
- FPix has 7 plaquette designs: 2-10 ROCs

Readout Chip

- ROC designed by PSI, manufactured by IBM
 - ▶ 0.25 μm process, \sim 1.3 million transistors
- ▶ ROC size: 8× 8mm²
 - 4160 pixels of $100 \times 150 \ \mu \text{m}^2$ in $r\phi \times z$ (CMS coordinates)
- ▶ 26 adjustable DACs per ROC, 4 trim bits per pixel
- Double column drain architecture
- 40 MHz analog readout: analog PH and pixel address

Infrastructure

Cooling

- Coolant T=+7.4°C. Cooling was stable in 2010/11, no problems observed
- in 2012 we may run at -10°C continuously, successful tests at this temperature done in January
- humidity problem observed later in February (to be solved during winter stop, details see later)

Power

- stable running in 2010/11, no major problems observed
- one remote sensing wire lost that affected 8 BPix modules

▶ Electronics

- ▶ hardware was very stable in 2010/11
- firmware have been modified several time to deal with different problems:
 - 1) high multiplicity events from beam-gas background, 2) internal noise of mezzanine card (corrupted readout), 3) heavy ion events handling

Pixel operation

- CMS downtime since restart in March 2011:
 - CMS efficient 92% of time
 - Pixel detector contributes 6% of the total inefficiency
 - ▶ In Spring 2010: contributed 11% of the total inefficiency
- ► HI collisions in Nov-Dec 2010:
 - CMS efficient 94% of time
 - Pixel detector contributes 5% of the total inefficiency

Operation in HI collisions

- Pb-Pb collisions in CMS
 - ▶ $\sqrt{s} = 2.76 \,\text{TeV}$
 - ▶ luminosity $\simeq 3 \times 10^{25} \mathrm{cm}^{-2} \mathrm{s}^{-1}$ for 128×128 bunches
 - minimum bias collision rate 150Hz
- Major differences between p-p and HI
 - much higher multiplicity (but uniform!)
 - much lower collision/trigger rate
- To cope with larger event size FEDs buffer size increased
- NO problems observed with pixel detector operation in HI collisions
- Pixel performance appeared identical to p-p collisions

Pixel detector status I

- ▶ The whole Pixel detector: 96.9% functional ROCs
 - ► FPix 92.8%: 4320-312=4008 functional ROCs
 - BPix 98.4%: 11520-186=11334 functional ROCs
- ► Total 'dead' random pixels : <2×10⁻⁴ in functional ROCs
 - ▶ about 6K ($\sim 10^{-4}$) inefficient pixel found with internal calibration
 - ▶ about 700 ($\sim 10^{-5}$) 'noisy' pixel (masked) found in cosmic ray data

Pixel detector status II

- ► Major problems in BPix:
 - single ROC problems: some recoverable
 - broken wires: not recoverable
 - token lost: not recoverable
- ► Major problems in FPix:
 - bad address levels due to slow signal rise time: recoverable in FED FW
 - no communication with optical transmitter: recoverable if CMS open

Beam-gas background I

What is beam-background events:

- showers of particles that graze the detector along the beam axis (z)
- occur coincident with bunch crossings
- consistent with beam-gas interactions in the beam pipe
- lead to a huge occupancy in BPix (but concentrated in 1 out of 36 FED channels)
- impose challenges to maintaining event synchronization, especially at high trigger rates

Beam-gas background II

Where is a problem:

- beam-gas event is large and can block FED(s) for long time
- next event comes at NOT expected time (later)
- ► FED(s) stays out of synchronization (timeout sent to CMS DAQ)

► Solution:

- 1 drop the event(s) that not arrive when expected (event 'data2')
- 2 if N (tunable) consecutive timeouts, stop CMS trigger, so FED can resynchronize itself

Operational temperature

- At certain moment we want T be lower, e.g. -10°C
 - detector need to be re-calibrated (DAC settings)
 - test has been done in January: not completed due to lack of time
 - later, in February, observed the RH problem (interlock due to high RH)
- 'Humidity problem'
 - it was not observed before winter 2010/11 stop
 - RH rises when CMS magnet is switched on (above 2-2.5T)
 - one side of detectors affected more than other
- Possible explanation and actions
 - hypothesis: it's known that some parts of CMS move on magnetic field turn on/off, this may create an opening in pixel volume sealing
 - keep track of RH problem, recover during winter 2011/12 stop

On-line calibrations

- Proper readout defined by several groups of settings:
 - at module level: ROC and TBM parameters
 - optical readout chain: AOH and DOH parameters
 - FED parameters
- Majority of settings stays unchanged until:
 - detector temperature will be changed
 - significant irradiation will be accumulated
- Some parameters in FEDs regularly re-calibrated:
 - adjust offset in optical receivers to keep signal within ADC range: small corrections made automatically, large - by recalibration
 - ADC levels needed to decode pixel addresses: mostly as a check
 - clock phase: phase of ADC, performed only as a check

On-line calibration: threshold

- Motivation:
 - lower threshold lower pixel charge reconstructable then longer cluster
 - longer cluster size better spacial hit resolution
- Threshold minimization
 - minimization done with help of internal calibrate signal (VCal)
 - method limitation: x-talk in ROC
- Mean threshold = 2457 electrons
- Mean noise less than 150 electrons
 - Conversion (from X-ray calibration): Q[e⁻]=65.5×VCal[DAC] - 414

Off-line calibration: ADC to Charge

- Relate PH (ADC) to deposited charge
 - ADC-to-Vcal done once a year (more often for control)
 - VCal-to-Charge calibration done in the lab with X-ray sources
- offline ADC-to-Vcal calibration:
 - ► fit single pixel response with linear function
 - result of the fit: gain and pedestal
- Granularity of constants used in CMS
 - ► HLT: averaged over ROC column (payload 800kB)
 - RECO: gain averaged over ROC column, pedestal per pixel (33MB)

High voltage scan

- HV scan performed on April 2010 and March 2011
- Few modules in BPix and FPix selected to be monitored
- ▶ No change observed in the depletion voltage (60-70V)

Pixel efficiency

Barrel Pixel detector in 2010:

- the initial average protons per bunch and the number of bunches (colliding in CMS) are shown in green
- expected dynamic efficiency loss due to increased bunch charge and number of bunches (occupancy increase)
- overall decrease in efficiency in all layers of 0.2%-0.4%

► Forward Pixel detector in 2010

Efficiency on the Fpix stays within the systematics uncertainty of 0.002

BPix efficiency

- ROC efficiency represented per layer
 - hatched area represents inactive modules
 - ladder index changes along ϕ , module index changes along z
- Systematic uncertainty on ROC efficiency is 2 x 10⁻³
- ► Statistical uncertainty on ROC efficiency is $10^{-4} \div 10^{-3}$
- Inefficiency concentrated in single ROCs

Time delay scan

- Timing affects cluster size (charge collection efficiency) due to time walk
 - low pulses exceed threshold later than large pulses
 - adjust timing to latest possible with respect to LHC clock
- Methods used
 - determine maximum cluster size plateau with step 6ns
 - make fine scan with high statistics near the end of plateau (2ns)

Cluster charge distribution

- LHC collision data @ 7 TeV
 - ▶ corrected to incident angle hit cluster charge for tracks with p_⊥ >2 GeV
- MC simulation provides accurate description of data
 - peak position correct to 2-4%, width 10-15%

Pixel hit resolution

- Intrinsic position resolution with overlap method
 - pairs of consecutive hits of track in the same layer
 - difference of measured hit positions
 - difference of extrapolated hit positions
 - difference of two differences
 - reduced sensitivity to alignment and extrapolation errors
- 1316 overlap regions analyzed (8.3M hit pairs)
- ▶ Good agreement data-MC: ±1µm
- Intrinsic hit position resolution:

$$\sigma_{trans} = 11.2 \pm 0.1 \, \mu \text{m}$$

 $\sigma_{long} = 26.8 \pm 0.1 \, \mu \text{m}$

Lorentz angle measurements

- Lorentz shift makes clusters wider
 - hence, better hit position resolution
 - need to be known for data and in MC
- 1 Minimum cluster size in cosmics data
 - measure cluster width vs incident angle
- 2 'Grazing angle' in collision data
 - measure e⁻ drift length vs production depth
- Detailed MC simulation done with PIXELAV
- Results are consistent in different methods and with MC
 - ▶ BPix: $\cot \alpha = -0.462(452) \pm 0.003(2)$
 - FPix: $\cot \alpha = -0.074(74) \pm 0.005(4)$
- Main issue forward-backward asymmetry

Pixel data applications

- Pixel data has many applications apart of physics:
 - PV allows to monitor beam spot position and width
 - photon conversion or NI points are used for material distribution studies
 - ► follow Giacomo Sguazzoni talk on CMS Tracker performance
- ▶ Physics Example: $b\overline{b}$ angular correlations based on SV:
 - ▶ final goal to measure different $b\overline{b}$ production mechanisms: FC, GS and FE, and test pQCD LO and NLO x-sections and their evolution with energy
 - \blacktriangleright algorithm allows to distinguish 2 *b*-particles even if 2 *b*-jets are merged and hence sensitive to small $\Delta\phi_{b\overline{b}}$

Conclusions

- Smooth operation of pixel detector in 2010/11, both in p-p and HI
- Pixel detector provides high quality data used in various physics analysises
- Performance of the detector under control
- Changes in 2010
 - 'unattended' operation of the detector: only central crew and expert on call
 - beam-gas background problem understood and downtime caused reduced
 - ▶ functional fraction 96.7% (1.5% lost in 2010), some to be recovered
 - downtime caused by pixel detector improved (already very small), work ongoing to recover remaining losses
- Preparation to cooler operation has started
 - ► tests of the detector operation and calibration at -10°C
 - ▶ RH problem under investigation, working on possible solutions

Back up slides

Organization

- Pixel field manager: one person
- On call experts (former shift leaders)
 - since summer 2010 we do not have permanent pixel shifter at P5 (3 persons a day)
 - only one person (on call expert is responsible for the operation)
 - now we have about 20 people to perform this task
- Pixel DAQ
 - pixel DAQ SW, run control (interface to the central DAQ): 2-3 persons
 - pixel configuration DB: 2-3 persons
- pixel DCS common with strip group: 3 persons from pixel side and 2-3 from strips
- pixel DQM: 2 persons

Detector status: known problems

Detector component	# ROCs	Problem
FPix BmO D1 BLD9 PNL2	24	low signal amp. (bad TBM)
FPix Bml D1 BLD11 PNL2	24	one ROC without analog output, whole panel lost
FPix BmO D2 BLD8 PNL2	24	bad Address Levels (slow rise-time)
FPix BmO D2 BLD8 PNL1	21	bad Address Levels (slow rise-time)
FPix BmO D2 BLD7 PNL1	21	bad Address Levels (slow rise-time)
FPix BmO D2 BLD9 PNL1	21	bad Address Levels (slow rise-time)
FPix_Bml_D2_BLD10_PNL1	21	bad Address Levels (slow rise-time)
FPix Bml D1 BLD6 PNL1	21	no signal
FPix Bpl D2 BLD4 PNL1	21	no I2C to AOH, need to open CMS
FPix_Bpl_D2_BLD4_PNL2	24	no I2C to AOH, need to open CMS
FPix Bpl D2 BLD5 PNL1	21	no I2C to AOH, need to open CMS
FPix_Bpl_D2_BLD5_PNL2	24	no I2C to AOH, need to open CMS
FPix_Bpl_D2_BLD6_PNL1	21	no I2C to AOH, need to open CMS
FPix_Bpl_D2_BLD6_PNL2	24	no I2C to AOH, need to open CMS
BPix_Bpl_SEC5_LYR3_LDR12F_MOD2	16	no HV
BPix_Bpl_SEC8_LYR3_LDR22H_MOD4	8	no HV
BPix_BpO_SEC1_LYR2_LDR1H_MOD4	8	no HV
BPix BpO SEC8 LYR2 LDR16H MOD4	8	no HV
BPix_BpO_SEC7_LYR2_LDR13F_MOD3 TBM-B	8	token lost
BPix_Bml_SEC2_LYR3_LDR4F_MOD3	16	token lost
BPix_BpO_SEC4_LYR2_LDR8F_MOD1 TBM-A	8	bad ROC
BPix_Bml_SEC3_LYR2_LDR5F_MOD3 TBM-A	8	bad ROC header
BPix_Bml_SEC3_LYR2_LDR5F_MOD3 TBM-B	8	ROC cannot be programmed
BPix_BmO_SEC7_LYR2_LDR14F_MOD4	16	dead module
BPix_BpI_SEC8_LYR1_LDR9F_MOD2	16	no trigger
BPix_BmO_SEC4_LYR2_LDR8F_MOD4 TBM-A	8	bad ROC
BPix_Bml_SEC3_LYR1_LDR4F_MOD4 TBM-B	8	no signal (wire bond?)
BPix_BpO_SEC7_LYR3_LDR19F_MOD2	16	tocken lost
BPix_Bpl_SEC1_LYR3_LDR3F_MOD2	16	cann't be programmed
BPix Bml SEC5 LYR3 LDR13F MOD2	16	remote sensing wire

Infrastructure status II

Detector Control System (DCS)

- monitor power (LV and HV), T and RH: stable functioning
- several thing still have been modified (like staged BPix turn on)
- calibration of humidity and dew-points have been made at the beginning of 2011

Data Quality Monitor (DQM)

- with data taking experience permanently improving the monitoring
- due to unattended pixel operation since summer 2010, central DQM shifters have been provided with clear plots and instructions

► Pixel on-line SW (POS)

- written very well from the beginning
- all needed calibrations of the detector work very reliably
- concerns about man power to support the SW on a long term bases

Cluster size

► Cluster size distributions: note different geometry of forward and barrel pixel detectors

- ▶ BPix:
 - local X corresponds to global $r\phi$ (short clusters)
 - local Y corresponds to global z (long clusters)
- FPix: all tracks almost perpendicular to sensor
 in both directions clusters are short
- MC simulation describes data quite well

Thresholds

▶ Procedure :

- The mean absolute threshold on each ROC is computed from a subset of pixels on the ROC (2%)
- The absolute threshold of each pixel is obtained from an SCurve calibration covering two bunch crossings
- An SCurve is the hit efficiency as a function of injected charge (VCal).
- ► The threshold is taken as the VCal corresponding to 50% efficiency
- ► Conversion: #electrons=65.5×VCal 414 (X-ray calib.)

DACs optimization

- Few operational parameters are T dependent
 - some DACs tuned dynamically, so no need for a special procedure
 - others should be re-adjusted
- BPix
 - 2 sets of DACs for +17°C and -10°C taken at PSI
 - ▶ T dependence approximately linear
 - new DACs obtained by linear interpolation from 2 sets
- ► FPix
 - DACs tuned in P5 using special calibration procedures
- ► Thresholds are minimized in BPix/FPix: 2740/2480 e⁻